Production of Edible Films from Whey-Chia Seed Combinations with Different Plasticizers: Effects on Physicochemical Properties
https://doi.org/10.52045/jca.v5i2.900
Keywords:
Chia Seed, Edible Film, Physicochemical, Plasticizer, WheyAbstract
The utilization of natural polymer-based feeding films has emerged as an alternative to plastics and as a solution to the problem of environmental pollution. Concurrently, these films maintain the function of maintaining the shelf life, quality, and safety of food products. The objective of this study was to ascertain the effect of varying proportions of whey-chia seed combinations and types of plasticiser on the physicochemical characteristics of food films. The present study employed a completely randomised factorial design, comprising Factor A: whey-chia seed combination (A1 = 1:0.5; A2 = 1:0.75 and A3 = 1:1) and Factor B: type of plasticizer (B1 = sorbitol and B2 = polyethylene glycol/PEG). The interaction between the whey-chia seed combination and the type of plasticizer did not show a significant effect (P>0.05). However, the whey-chia seed combination itself had a significant impact (P<0.01) on film elongation and tensile strength. The utilisation of sorbitol as a plasticiser resulted in enhanced flexibility of the film, thereby rendering it more appropriate for utilisation in healthy and environmentally friendly food applications. The optimal treatment was determined to be a mixture of whey-chia seeds in a 1:1 ratio with sorbitol plasticizer, yielding an elongation at break of 74.23%, tensile strength of 3.997 MPa, and crude fibre content of 15.67%.
Downloads
References
Aleksanyan KV. 2023. Polysaccharides for biodegradable packaging materials: past, present, and future (Brief Review). Polymers, 15(2): 451. https://doi.org/10.3390/polym15020451
AOAC. 2007. Official methods of analysis, 18th edn, 2005; Current through revision 2, 2007. Association of Official Analytical Chemists, Rockville, MD, USA.
Capitani MI., Matus-Basto A., Ruiz-Ruiz JC., Santiago-García JL., Betancur-Ancona DA., Nolasco SM., Tomás MC., & Segura-Campos MR. 2016. Characterization of biodegradable films based on Salvia hispanica L. protein and mucilage. Food and Bioprocess Technology, 9(8): 1276–1286. https://doi.org/10.1007/s11947-016-1717-y
Charles-Rodríguez AV., Rivera-Solís LL., Martins JT., Genisheva Z., Robledo-Olivo A., González-Morales S., López-Guarin G., Martínez-Vázquez DG., Vicente AA., & Flores-López ML. 2020. Edible films based on black chia (Salvia hispanica L.) seed mucilage containing rhus microphylla fruit phenolic extract. Coatings, 10(4). https://doi.org/10.3390/coatings10040326
Chen H., Wang J., Cheng Y., Wang C., Liu H., Bian H., Pan Y., Sun J., & Han W. 2019. Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12). https://doi.org/10.3390/polym11122039
Cinelli M., Coles SR., & Kirwan K. 2014. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46. https://doi.org/10.1016/j.ecolind.2014.06.011
de Souza Silva R., Santos B. MM., Fonseca G. G., Prentice C., & Cortez-Vega W. R. 2020. Analysis of hybrid sorubim protein films incorporated with glycerol and clove essential oil for packaging applications. Journal of Polymers and the Environment, 28(2). https://doi.org/10.1007/s10924-019-01608-7
Dick M., Pagno CH., Costa TMH., Gomaa A., Subirade M., Rios AO., & Flôres SH. 2016. Edible films based on chia flour: Development and characterization. Journal of Applied Polymer Science, 133(2). https://doi.org/10.1002/app.42455
Ding Y., Lin HW., Lin YL., Yang DJ., Yu YS., Chen JW., Wang SY., & Chen YC. 2018. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. Journal of Food and Drug Analysis, 26(1). https://doi.org/10.1016/j.jfda.2016.12.012
Fahrullah F., Ervandi M., & Rosyidi D. 2021. Characterization and antimicrobial activity of whey edible film composite enriched with clove essential oil. Tropical Animal Science Journal, 44(3). https://doi.org/10.5398/tasj.2021.44.3.369
Fahrullah F., Radiati LE., Purwadi P., & Rosyidi D. 2020. The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science, 8(1). https://doi.org/10.12944/CRNFSJ.8.1.31
Fahrullah F., Noersidiq A., Kisworo D., & Maruddin F. 2024. Evaluating physicochemical properties of whey-chia seed edible films for biodegradable packaging. Tropical Animal Science Journal, 47(4), 519–528. https://doi.org/10.5398/TASJ.2024.47.4.519
Fahrullah F., Noersidiq A., & Maruddin F. 2022. Effects of glycerol plasticizer on physical characteristic of whey-konjac films enriched with clove essential oil. Journal of Food Quality and Hazards Control, 9, 226–233. https://doi.org/10.18502/jfqhc.9.4.11377
Fahrullah F., Radiati LE., Purwadi P., & Rosyidi D. 2020. The effect of different plasticizers on the characteristics of whey composite edible film. Jurnal Ilmu Dan Teknologi Hasil Ternak, 15(1). https://doi.org/10.21776/ub.jitek.2020.015.01.4
Galus S., & Lenart A. 2019. Optical, mechanical, and moisture sorption properties of whey protein edible films. Journal of Food Process Engineering, 42(6). https://doi.org/10.1111/jfpe.13245
Haq MA., Jafri FA., & Hasnain A. 2016. Effects of plasticizers on sorption and optical properties of gum cordia based edible film. Journal of Food Science and Technology, 53(6). https://doi.org/10.1007/s13197-016-2227-7
Hrnčič MK., Ivanovski M., Cör D., & Knez Ž. 2020. Chia Seeds (Salvia hispanica L.): An overview-phytochemical profile, isolation methods, and application. Molecules, 25(1). https://doi.org/10.3390/molecules25010011
Jiang B., Wang L., Na J., Zhang X., Yuan Y., Liu C., & Feng Z. 2020. Environmentally-friendly strategy for separation of α-lactalbumin from whey by aqueous two phase flotation. Arabian Journal of Chemistry, 13(1). https://doi.org/10.1016/j.arabjc.2018.11.013
Kaewprachu P., Osako K., & Rawdkuen S. 2018. Effects of plasticizers on the properties of fish myofibrillar protein film. Journal of Food Science and Technology, 55(8). https://doi.org/10.1007/s13197-018-3226-7
Khazaei N., Esmaiili M., Djomeh ZE., Ghasemlou M., & Jouki M. 2014. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102(1). https://doi.org/10.1016/j.carbpol.2013.10.062
Maruddin F., Ratmawati R., Fahrullah F., & Taufik M. 2018. Karakterisitik Edible Film Berbahan Whey Dangke dengan Penambahan Karagenan. Jurnal Veteriner, 19(2). https://doi.org/10.19087/jveteriner.2018.19.2.291
Mekonnen T., Mussone P., Khalil H., & Bressler D. 2013. Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43). https://doi.org/10.1039/c3ta12555f
Moghadam M., Salami M., Mohammadian M., Khodadadi M., & Emam-Djomeh Z. 2020. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104. https://doi.org/10.1016/j.foodhyd.2020.105735
Mouzakitis CK., Sereti V., Matsakidou A., Kotsiou K., Biliaderis CG., & Lazaridou A. 2022. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocolloids, 132. https://doi.org/10.1016/j.foodhyd.2022.107856
Muñoz-Tebar N., Molina A., Carmona M., & Berruga MI. 2021. Use of chia by-products obtained from the extraction of seeds oil for the development of new biodegradable films for the agri-food industry. Foods, 10(3). https://doi.org/10.3390/foods10030620
Muñoz-Tébar N., Carmona M., de Elguea-Culebras GO., Molina A., & Berruga MI. 2022. Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2). https://doi.org/10.3390/membranes12020213
Nisar T., Wang ZC., Yang X., Tian Y., Iqbal M., & Guo Y. 2018. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106. https://doi.org/10.1016/j.ijbiomac.2017.08.068
Saberi B., Chockchaisawasdee S., Golding JB., Scarlett CJ., & Stathopoulos CE. 2017. Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. International Journal of Biological Macromolecules, 104. https://doi.org/10.1016/j.ijbiomac.2017.06.051
Sanyang ML., Sapuan SM., Jawaid M., Ishak MR., & Sahari J. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1). https://doi.org/10.1007/s13197-015-2009-7
Schmid M. 2013. Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein Isolate and Glycerol. Materials, 6(8). https://doi.org/10.3390/ma6083254
Timilsena YP., Adhikari R., Kasapis S., & Adhikari B. 2015. Rheological and microstructural properties of the chia seed polysaccharide. International Journal of Biological Macromolecules, 81. https://doi.org/10.1016/j.ijbiomac.2015.09.040
Wardana AA., & Widyaningsih TD. 2018. Development of edible films from tapioca starch and agar, enriched with red cabbage (Brassica oleracea) as a sausage deterioration bio-indicator. IOP Conference Series: Earth and Environmental Science, 109(1). https://doi.org/10.1088/1755-1315/109/1/012031
Wittaya T. 2013. Influence of Type and concentration of plasticizers on the properties of edible film from mung bean proteins. KMITL Science and Technology Journal, 13(1).
Zettel V., & Hitzmann B. 2018. Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science and Technology, 80. https://doi.org/10.1016/j.tifs.2018.07.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fahrullah Fahrullah, Bulkaini Bulkaini, Djoko Kisworo, I Gede Nano Septian

This work is licensed under a Creative Commons Attribution 4.0 International License.