Biodiesel Production Process from Reutealis trisperma: Technology, Opportunities and Challenges

https://doi.org/10.52045/jca.v5i2.887

Authors

  • Gesha Desy Alisha Faculty of Forestry, Universitas Mulawarman, Samarinda, 75123, East Kalimantan, Indonesia

Keywords:

Reutealis trisperma, biodiesel, transesterification, catalyst

Abstract

Reutealis trisperma (sunan candlenuts) is a non-edible vegetable oil source that can be used as a feedstock for biodiesel production. The biodiesel production process from Reutealis trisperma seed oil involves several stages, including oil extraction, purification, as well as esterification and transesterification reactions using catalysts. This article aims to examine the technology of biodiesel production from Reutealis trisperma seeds, the challenges faced in industrial implementation, and its future development opportunities. Various oil extraction methods, such as mechanical pressing and solvent extraction are compared to determine the efficiency of crude oil conversion. Additionally, the use of heterogeneous and homogeneous catalysts in the transesterification process is analyzed to optimize biodiesel conversion. The results of the literature study conducted indicate that biodiesel from Reutealis trisperma has characteristics that comply with national and international biodiesel standards. However, there are several challenges in the production process, such as the availability of raw materials, the fatty acid content and composition of Reutealis trisperma, environmental impact, and sustainability aspects. The development of more environmentally friendly technology and the utilization of biomass waste-based catalysts present potential opportunities to enhance the sustainability of this biodiesel production.

Downloads

Download data is not yet available.

References

Abbas, G.H. & Ilyas, N.M. 2021. Review: penggunaan katalis heterogen pada produksi biodiesel. Jurnal Ilmiah Kimia dan Pendidikan Kimia, 22(2): 99-107. https://doi.org/10.35580/chemica.v22i2.26406

Adebisi, S.A., Akanmu, I.J., & Azeez, L.A. 2020. Production of biodiesel from some vegetable oils. LAUTECH Journal of Engineering and Technology, 14(1): 80-86. http://dx.doi.org/10.3989/gya.2008.v59.i1.494

Adhami, K., Asadollahzadeh, H., & Ghazizadeh, M. 2019. A novel process for simultaneous degumming and deacidification of soybean, canola and sunflower oils by tetrabutylphosphonium phosphate ionic liquid. Journal of Industrial and Engineering Chemistry, 76: 245-250. https://doi.org/10.1016/j.jiec.2019.03.048

Agustian, A. 2015. Pengembangan bioenergi di sektor pertanian: potensi dan kendala pengembangan bioenergi berbahan baku ubi kayu. Analisis Kebijakan Pertanian, 13(1): 19-38

Aneu, A., Wijaya K., Syoufian, A. 2022. Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils. Journal of Porous Materials, 29: 1321-1335. https://doi.org/10.1007/s10934-022-01258-6

Anggraini, S.D. 2018. Rekayasa produksi biodiesel dari minyak kemiri sunan (reutealis trisperma oil) sebagai alternatif bahan bakar mesin diesel. JATI UNIK, 2 (1): 1-13. https://doi.org/10.30737/jatiunik.v2i1.272

Ashok, C., Sankarrajan, E., Kumar, P.S., Janani, G., Seresh, A.R., Muthuvelu, K.S., & Rangasamy, G. 2024. Ultrasound-assisted transesterification of waste cooking oil to biodiesel utilizing banana peel derived heterogeneous catalyst. Biotechnology for Sustainable Materials, 1(5): 1-14. https://doi.org/10.1186/s44316-024-00004-z

Awogbemi, O., Ojo, A.A., & Adeleye, S.A. 2024. Advancements in the application of metal oxide nanocatalysts for sustainable biodiesel production. Discover Applied Sciences, 6:250. https://doi.org/10.1007/s42452-024-05920-3

Azad, A.K., Jadeja, A.C., Doppalapudi, A.T., Hassa, N.M.S., Nabi, M.N., & Rauniyar, R. 2024. Design and simulation of the biodiesel process plant for sustainable fuel production. Sustainability, (16): 3291. https://doi.org/10.3390/su16083291

Bello, A.M. 2024. An insight into the performance and prospect of catalysts in biodiesel production, with special emphasis on heterogeneous based catalysis. Malaysian Journal of Catalysis, 8: 58-70. https://dx.doi.org/10.11113/mjcat.v8n2.190

Berry, Herman, M., Pranowo, D., & Wahyudi, A. 2009. Karakteristik minyak kemiri sunan (aleurites trisperma blanco) sebagai bahan bakar nabati. Prosiding Seminar Nasional Teknik Kimia. 23 April 2009. Hlm. 91-98

Cholid, M., & Santoso, B. 2020. Acceleration of productive age through candlenut [reutealis trisperma (blanco) airy shaw] grafting method. IOP Conference Series: Earth and Environmental Science, 418: 1-10. https://iopscience.iop.org/article/10.1088/1755-1315/418/1/012071

Elouafy, Y., El Yadini, A., El Moudden, H., Harhar, H., Alshahrani, M.M., Al Awadh, A.A., Goh, K.W., Ming, L.C., Bouyahya, A., & Tabyouai, M. 2022. Influence of the extraction method on the quality and chemical composition of walnut (Juglans regia L.) Oil. Molecules, 27: 1-12. https://doi.org/10.3390/molecules27227681

Elsayed, M., Eraky, M., Osman, A.I., Wang, J., Farghali, M., Rashwan, A.K., Yacoub, I.H., Hanelt, D., & Abomohra. 2024. Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environmental Chemistry Letters, 22: 609-634. https://doi.org/10.1007/s10311-023-01671-6

El-Naggar, K.A., Mansor, E.S., Maafa, I.M., Abutaleb, A., Yousef, A., Matar, S.M., & Hamid, E.M.A. 2024. Valorization of marble sludge waste in biodiesel production using a central composite design. Scientific reports, 14:28136. https://doi.org/10.1038/s41598-024-77819-3

Farouk, S.M., Tayeb, A.M., Abdel-Hamid, S.M.S, & Osman, R.M. 2024. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research, 31: 12722-12747. https://doi.org/10.1007/s11356-024-32027-4

Febriansyah, H. 2022. Evaluasi kualitas pencampuran minyak solar dan bahan bakar nabati. Jurnal Standardisasi, 24(1): 1-12

Gao, Y., Ding, Z., Liu, Y., & Xu, Y. 2024. Aqueous enzymatic extraction: a green, environmentally friendly and sustainable oil extraction technology. Trends in Food Science & Technology, 144: 104315. https://doi.org/10.1016/j.tifs.2023.104315

Geow, C.H., Tan, M.C., & Chin, N.L. 2020. Characterization of hazelnut oil extracted by ultrasound assisted solvent extraction. Malaysian Applied Biology, 49 (3): 1-9. https://doi.org/10.55230/mabjournal.v49i3.1530

Gholami, A., Pourfayaz, F., & Rodygin, K. 2025. Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements. ChemBioEng Reviews, 12(1): 1-41. https://dx.doi.org/10.1002/cben.202400033

Hamidov, A., Helming, K. 2020. Sustainability considerations in water–energy–food nexus research in irrigated agriculture. Sustainability, 12: 6274. https://doi.org/10.3390/su12156274

Herizal & Anwar, C. 2015. Pembuatan biodiesel dari minyak kemiri sunan via hidrogenasi katalitik bahan baku dengan katalis Niγ Al2O3. Lembaran Publikasi Minyak dan Gas Bumi, 49(1): 53-60. https://doi.org/10.29017/LPMGB.49.1.236

Herman, M., Hafif, B., Ferry, Y., Aunillah, A., Firdaus, N.K., Listyati, D., & Pranowo, D. 2023. The prospect of kemiri sunan (Reutealis trisperma B. Airy shaw) development as a source of bio-oil from inedible crops. E3S Web of Conferences, 373: 1-8. https://doi.org/10.1051/e3sconf/202337304017

Holihah, Utami, T.P., & Prasetyoko, D. 2013. Sintesis dan karakterisasi biodiesel dari minyak kemiri sunan (reutealis trisperma) dengan variasi konsentrasi katalis NaOH. Jurnal MIPA, 36 (1): 51-59

Iqbal, A., Ali, M., Sultana, R., Towheed, K., Naeem, M.U., & Karim, M.A. 2024. Purification of crude glycerol recovered from fish processing waste biodiesel process. International Journal of Economic and Environmental Geology, 15(2): 1-8

Joelianingsih, Nur, F.R., Saputri, M.E., & Purwaningsih, I.S. 2021. Non-catalytic biodiesel synthesis from kemiri sunan (Reutealis trisperma) oil in a semi-batch bubble column reactor. Reaktor, 21(3): 95-102. https://doi.org/10.14710/reaktor.21.3.95-102

Kusmiyati, K., Prasetyoko, D., Murwani, S., Fadhilah, M.N., Oetami, T.P., Hadiyanto, H., Widayat, W., Budiman, A., & Roesyadi, A. 2019. Biodiesel production from reutealis trisperma oil using koh impregnated eggshell as a heterogeneous catalyst. Energies, 12 (3714): 1-11. https://doi.org/10.3390/en12193714

Lim, R., Kim, D. & Lee, J. 2020. Reutealis trisperma oil esterification: optimization and kinetic study. Energies, 13 (6): 1513. https://doi.org/10.3390/en13061513

Liu, Y., Chai, Z., & Haixia, Y. 2023. Identification of pressed and extracted vegetable oils by headspace GC-MS. Heliyon, 9(8) e18532: 1-8. https://doi.org/10.1016/j.heliyon.2023.e18532

Marhamati, M., Kakhaki, Z.K., & Rezaie, M. 2020. Advance in ultrasound-assisted extraction of edible oils: a review. Journal of Nutrition, Fasting, and Health, 8 (4): 220-230. http://dx.doi.org/10.22038/JNFH.2020.51138.1288

Murni, S.W., Kusumawardani, G., & Arifin, T. 2016. Pembuatan biodiesel dari minyak kemiri sunan dengan proses dua tahap. Prosiding Seminar Nasional Teknik Kimia Kejuangan. 17 Maret 2016. Yogyakarta. hlm. J11-1-J11-5

Monika, Banga, S., & Pathak, V.V. 2023. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10 (100209): 1-20. https://doi.org/10.1016/j.nexus.2023.100209

Nawin, L., Kumar, M., Darshan, & Thakur, C. 2024. Application of catalysts used in biodiesel production - a review. Journal of Environmental Nanotechnology, 13(3): 145-151. https://doi.org/10.13074/jent.2024.09.242716

Okechukwu, O.D., Joseph, E., Nonso, U.C., & Kenechi, N. 2022. Improving heterogeneous catalysis for biodiesel production process. Cleaner Chemical Engineering, 3: 100038. https://doi.org/10.1016/j.clce.2022.100038

Osman, W.N.A.W., Feroze, H., Samsuri, S., & Yanez, D.H. 2023. Biodiesel purification by solvent-aided crystallization using n-hexane as solvent. Materials Research Proceedings, 29: 117-127. https://doi.org/10.21741/9781644902516-15

Prabaningrum, N., Mondjo, Dwiputra, G., Anwar, P.D., Meilani, A.N., & Istqomah, A. 2020. Optimization of in situ esterification of Reutealis trisperma seeds. AIP Conf Proc,2223: 020007-1- 0220007-8. https://doi.org/10.1063/5.0004385

Prado, R.G., Bianchi. M.L., da Mota, E.G., Brum, S.S., Lopes, J.H., & da Silva, M.J. 2018. H3PMo12O40/agroindustry waste activated carbon-catalyzed esterification of lauric acid with methanol: a renewable catalytic support. Waste and Biomass Valorization, 9: 669-679. https://doi.org/10.1007/s12649-017-0012-0

Pranowo, D., Herman, M., & Syafruddin. 2015. Potensi pengembangan kemiri sunan (reutealis trisperma (blanco) airy shaw) di lahan terdegradasi. Perspektif, 14(2): 87-101. https://doi.org/10.21082/p.v14n2.2015.87-101

Purdy, S.K., Shen, J., Zhu, J., Tse, T.J., & Reaney, M.J.T. 2024. Transesterification catalyst strength as observed by solution-based oxygen-17 nuclear magnetic resonance spectroscopy. C Canadian Journal of Chemistry, 00: 1-5. https://doi.org/10.1139/cjc-2024-0090

Rachmadona, N., Nurrusyda, F.S., Sumeru, H.A., Kusuma, H.D., Dewi, D.A.S.L.A. 2023. Produksi biodiesel dari crude palm oil (cpo) dengan menggunakan lipase dan etanol konsentrasi rendah. Kimia Padjadjaran, 2(1): 1-7

Rahmawati, Z., Holihah, H., Purnami, S.W. Bahruji, H., Oetami, P.T., & Prasetyoko, D. 2021. Statistical optimisation using taguchi method for transesterification of Reutealis trisperma oil to biodiesel on CaO-ZnO catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (3): 686-695. https://doi.org/10.9767/bcrec.16.3.10648.686-695

Riayatsyah, T.M.I., Thaib, R., Silitonga, A.S., Milano, J., Shamsuddin, A.H., Sebayang, A.H., Rahmawaty, Sutrisno, J., & Mahlia, T.M.I. 2021. Biodiesel production from reutealis trisperma oil using conventional and ultrasonication through esterification and transesterification. Sustainibility, 13 (6): 3350. https://doi.org/10.3390/su13063350

Santoso, B., Cholid, M., & Soemarno. 2019. Food crops farming under Sunan candlenut (Reutealis trisperma (blanco) airy shaw) stand at pati and asembagus. IOP Conference Series: Earth and Environmental Science, 418: 1-7. https://iopscience.iop.org/article/10.1088/1755-1315/418/1/012070

Silitonga, A.S., Mahlia, T.M.I., Ong, H.C., Riayatsyah, T.M.I., Kusumo, F., Ibrahim, H., Dharma, S., & Gumilang, D. 2017. A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources, Part A: Recovery Utilization and Environmental Effect, 39 (20): 2006-2014. https://doi.org/10.1080/15567036.2017.1399174

Simbolon, E., & Aisyah, L. 2013. Palm oil biodiesel: challenges, risks and opportunities for reducing and replacing the non-renewable fossil fuel dependency - a review. Scientific Contributions Oil & Gas, 36 (1): 15-29. https://doi.org/10.29017/SCOG.36.1.645

Supriyadi, S., Purwanto, P., Anggoro, & D.D., Hermawan. 2018. Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics. E3S Web of Conferences, 31. https://doi.org/10.1051/e3sconf/20183102014

Supriyadi, S., Purwanto, P., Hermawan, H., Anggoro, D.D., Carson, C., & Mukhtar, A. 2021. Characteristics of kemiri sunan (Reutalis trisperma (blanco) airy shaw) biodiesel processed by a one stage transesterification process. IOP Conference Series: Earth and Environmental Science, 623: 1-7. https://iopscience.iop.org/article/10.1088/1755-1315/623/1/012101

Variyana, Y., Rezki, A.S., Ermaya, D., & Mahfud, M. 2023. Ekstraksi minyak nabati dari biji kemiri (aleurites moluccana l. Willd.) dengan metode microwave hydrodiffusion and gravity (mhg). Journal of Chemical Process Engineering, 08(1): 7-16. https://doi.org/10.33536/jcpe.v8i1.1555

Yeow, A.T.H., Hayyan, A., Junaidi, M.U.M., Salleh, M.Z.M., Alnazi, Y.M., Saleh, J., Hashim, M.A., & Gupta, B.S. 2024. Development of novel API-based deep eutectic solvents for esterification of high free fatty acid. Journal of Industrial and Engineering Chemistry, 140: 298-310. https://doi.org/10.1016/j.jiec.2024.05.049

Downloads

Published

2025-06-15

How to Cite

Gesha Desy Alisha. (2025). Biodiesel Production Process from Reutealis trisperma: Technology, Opportunities and Challenges. CELEBES Agricultural, 5(2), 77–88. https://doi.org/10.52045/jca.v5i2.887