Monitoring Land Use and Land Cover Using Remote Sensing Technology in Kubu Raya Regency, West Kalimantan Province
https://doi.org/10.52045/jca.v5i1.867
Abstract
Kubu Raya Regency is one of the areas that has a peat ecosystem in it. The peat ecosystem has a role and function in mitigating climate change because it has the ability to store quite high carbon reserves. However, peat ecosystems often experience degradation and changes in land cover which can contribute carbon emissions to the atmosphere. Remote sensing is a technology that can be used to detect changes in land cover and use in Kubu Raya Regency. Therefore, this research aims to detect changes in land cover and using remote sensing technology and assess the level of accuracy of the detection results. Analysis of changes in land cover and use from 2000 - 2023 was obtained by guided classification using the Random Forest (RF) algorithm which involves various vegetation, water and built-up land indices. The research results show that there is a decrease in forest land area from 2000 to 2023 amounting to 106,542 ha. The forest area in 2000 was 524,359 ha, while in 2023 it will be 417,817 ha. The results of accuracy measurements show an overall accuracy (OA) value of 98.84% with a kappa statistic of 0.98. It is hoped that the results of these findings will provide an initial picture of the condition of the ecosystem in Kubu Raya Regency, most of which is a peat ecosystem, as a consideration in formulating peat ecosystem conservation policies.
Downloads
References
Ali A, Sa’adah U, Satria PA & Apray AD. 2023. Monitoring Perubahan Tutupan Lahan di Kota Blitar Berbasis Algoritma Random Forest. Jurnal Fisika Unand, 12(3), 409-415. https://doi.org/10.25077/jfu.12.3.409-415.2023
Austin KG, Roglich MG, Smith DS, Schwanes AM & Swenson JJ. 2017. Trends I size of tropical deforestation events signal increasing dominance of industrial scale drivers. Environmental Research Letters, 12, 1-12. http://doi.org/10.1088/1748-9326/aa6a88
Bajocco S, Angelis AD, Perini L, Ferrara A & Salvati L. 2012. The impact of land use/land cover changes on land degradation dynamics: a Mediterania case study. Environmental Management 49: 980-989. https://doi.org/10.1007/s00267-012-9831-8
Congalton RG & Green K. 2019. Assessing the accuracy of remotely sensed data: principles and practices. CRC press.
Darvishi A, Yousefi M & Marull J. 2020. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy, 99, 105098. https://doi.org/https://doi.org/10. 1016/j.landusepol.2020.105098
Diesing M, Green SL, Stephens D, Lark RM, Stewart HA & Dove D. 2014. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 84, 107-119.
Graeub BE, Chappel MJ, Wittman H, Ledermann S, Kerr RB & Gemmill-Herren B. 2016. The state of family farms in the world. World Dev, 87, 1-15.
Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3): 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
Huete A, Didan K, Miura T, Rodriguez EP, Gao X & Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
Kumar L & Mutanga O. 2018. Google Earth Engine Applications Since Inception: Usage, trends, and potential. Remote sensing, 10(10), 1-15. https://doi.org/10.3390/rs10101509
Kaufman YJ & Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOSMODIS. IEEE Transactions on Geoscience and Remote sensing, 30(2): 261-270. https://doi.org/10.1109/36.134076
Lymburner L, Beggs PJ & Jacobson CR. 2000. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(2): 183-192.
Madinu AMA, Jouhary N, Ulfa A, Ramadhanti IN, Pudjawati NH, Asy’Ari R, Zamani NP, Pramulya R & Setiawan Y. 2024. Monitoring of coastal dynamics at subang regency using Landsat Collection Data and Cloud Computing Based. BIO Web of Conferences. 106 : 04005. https://doi.org/10.1051/bioconf/202410604005.
Masganti, Wahyunto, Dariah A, Nurhayati & Yusuf R. 2014. Karakteristik dan Potensi Pemanfaatan Lahan Gambut Terdegradasi di Provinsi Riau. Jurnal Sumberdaya Lahan, 8(1), 59-66. https://doi.org/10.2017/jsdl.v8n1.2014.%p
Mustard JF, Defries RS, Fisher T & Moran E. 2012. Land-Use and Land-Cover Change pathways and impact. Remote Sensing and Digital Image Processing, 6: 422-439. https://doi.org/10.1007/978-1-4020-2562-4_24
Nath B, Ni-Meister W & Choudhury R. 2021. Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundwater for Sustainable Development, 12, 100500. https://doi.org/10.1016/j.gsd.2020. 100500
Nurda N & Habibie MI. 2023. Dampak Perubahan Lahan Melalui Pemanfaatan Remote Sensing dan GIS Terhadap Kebijakan Publik. Jurnal Lemhannas RI, 11(2), 127-131. https://doi.org/10.55960/jlri.v11i2.433
Rahmawati AD & Asy’Ari R. 2021. Google Earth Engine: Pemanfaatan Platform Pemetaan Berbasis Cloud Computing dalam Mendeteksi Distribusi Mangrove dengan Citra Sentinel-2 di Jakarta. Seminar Nasional Geomatika 2021: Inovasi Geospasial dalam Pengurangan Risiko Bencana. 6:423-434
Rahmawati AD, Asy’Ari R, Fathonah MA, Priyanto, Zamani NP, Pramulya R & Setiawan Y. 2022. Vegetation-Water-Built Up index combined: Algorithm indices combination for characterization and distribution of mangrove forest through Google Earth Engine. Celebes Agricultural. 3(1):20-42. https://doi.org/10.52045/jca.v3i1.298.
Ratmini MPS. 2012. Karakteristik dan Pengelolaan Lahan Gambut untuk Pengembangan Pertanian. Jurnal Lahan Suboptimal, 1(2), 197-206. https://doi.org/10.33230/JLSO.1.2.2012.16
Rivai FA, Fadhil MH, Asy’Ari R, Jouhary N, Saenal N, Ardan F, Pohan A, Pramulya R & Setiawan Y. 2023. Analysis of land use and land cover changes using random forest through Google Earth Engine in Depok City, Indonesia. SSRS Journal B: Spatial Research. 1:1-12.
Rad AM, Kreitler J & Sadegh M. 2021. Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, 140: 105030. https://doi.org/10.1016/j.envsoft.2021.105030
Rouse jr JW, Haas RH, Schell JA & Deering DW. 1974. Monitoring vegetation systems in theGreat Plains with ERTS. NASA special publication. 351(1974):309
Saputri HR, Asy'Ari R, Abd Malik AM, Dzulfigar A, Marfi KP, Raihan F & Setiawan Y. 2024. Hotspot Distribution Assessment on The Peat Hydrological Unit (PHU) in Riau Province. SSRS Journal B: Spatial Research, 2: 44-56. https://publishing.ssrs.or.id/ojs/index.php/ssrs-b/article/view/30
Sudrajat ASE. 2019. Pengelolaan Ekosistem Gambut Sebagai Upaya Mitigasi Perubahan Iklim Di Provinsi Kalimantan Selatan. Jurnal Planologi, 16(2), 219-237. https://doi.org/10.30659/jacee
Triyono D, Muani A & Sagiman S. 2015. Strategi pengembangan kebun kelapa sawit lahan gambut Kabupaten kubu Raya. Jurnal Social Economic of Agriculture, 4(2), 40-48.
Wösten JHM, Clymans E, Page SE, Rieley JO & Limin SH. 2008. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 73:212-224. https://doi.org/10.1016/j.catena.2007.07.010
Xiao X, Boles S, Frolking S, Salas W, Moore Iii B, Li C, He L & Zhao R. 2002. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China Using vegetation sensor data. International Journal of Remote Sensing, 23(15): 3009-3022. https://doi.org/10.1080/01431160110107734
Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14): 3025-3033. https://doi.org/10.1080/01431160600589179
Xu H. 2008. A new index for delineating built‐up land features in satellite imagery. International Journal of Remote Sensing, 29(14): 4269-4276. https://doi.org/10.1080/01431160802039957
Zulkarnain. 2014. Analisis Keuangan Daerah Kabupaten Kubu Raya Dalam Rangka Pelaksanaan Otonomi Daerah dan Faktor-Faktor yang mempengaruhinya [Tesis]. Pontianak (ID): Universitas Tanjungpura.
Zha Y, Gao J & Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3): 583-594. https://doi.org/10.1080/01431160304987
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Intan Nur Rahmadhanti, Salsabila Nur'Aini, Herni Natasha Aulia, Muhammad Ikhwan Ramadhan, Hanum Resti Saputri, Abd Malik A Madinu, Ali Dzulfigar, Rahmat Asy'Ari, Rahmat Pramulya, Yudi Setiawan

This work is licensed under a Creative Commons Attribution 4.0 International License.